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Abstract 

The convergence of lakehouse architectures and data mesh principles represents a fundamental shift 

in how organizations approach data management and analytics at scale. This paper explores the design 

and implementation of data products within a lakehouse infrastructure, utilizing data mesh as the 

operating model. We examine how domain-oriented ownership, coupled with the technical capabilities 

of modern lakehouse platforms, enables organizations to build scalable, discoverable, and self-service 

data products. Through detailed examples from the insurance domain, we demonstrate practical 

implementations of data contracts, service level agreements, and governance frameworks that support 

treating data as a product while maintaining the flexibility and cost-effectiveness of lakehouse storage. 

1. Understanding Data Products: Definition and Examples 

1.1 Defining the Data Product 

A data product is a self-contained, purpose-built data asset that is designed, developed, and maintained 

with the same rigor and product thinking applied to customer-facing software products. Unlike 

traditional data artifacts such as reports or dashboards, data products encapsulate not just the data itself, 

but also the metadata, quality guarantees, access mechanisms, documentation, and governance policies 

necessary to make that data valuable and usable by its intended consumers. 

The fundamental characteristics that distinguish a data product include product thinking applied to 

data assets, where each data product has a clear purpose, defined users, and measurable value metrics. 

Data products exhibit self-service accessibility, meaning consumers can discover, understand, and 

access the data without requiring intervention from the data product team. They maintain well-defined 

interfaces through published schemas, APIs, or query endpoints that abstract away implementation 

details. Quality and reliability guarantees are essential, with explicit service level objectives for 

freshness, accuracy, completeness, and availability. Clear ownership and accountability ensure a 

dedicated team maintains and evolves the product based on consumer needs. Finally, comprehensive 

documentation and metadata make the data product understandable and trustworthy to potential 

consumers. 

1.2 The Data Product Spectrum 

Data products exist along a spectrum of complexity and purpose. At the foundational level, source-

aligned data products provide cleaned, standardized versions of operational system data. For example, 

a policy administration system in an insurance company might produce a "Policy Master" data product 

that cleanifies and enriches raw policy data with standardized codes, calculated fields, and audit trails. 

Aggregate data products combine data from multiple sources to provide integrated views. An insurance 

carrier might create a "Customer 360" data product that merges data from policy systems, claims 

systems, billing platforms, and customer service interactions to provide a complete view of each 

policyholder's relationship with the company. 

Consumer-aligned data products are purpose-built for specific use cases or user communities. A 

"Claims Analytics" data product might be designed specifically for actuaries and include pre-

calculated loss ratios, development triangles, and reserve adequacy metrics that would be cumbersome 

for analysts to compute repeatedly from raw claims data. 

At the most sophisticated level, machine learning feature stores represent data products designed 

explicitly to support model training and inference, providing versioned, point-in-time correct features 

with lineage tracking and monitoring capabilities. 

1.3 Concrete Examples from Practice 

Consider an insurance company's "Auto Claims Loss Experience" data product. This product serves 

actuarial teams, underwriters, and product managers who need to understand loss patterns to inform 

pricing and risk selection decisions. The data product includes claim-level detail with calculated 

severity measures, aggregated summaries by various dimensions such as geography, vehicle type, and 
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driver characteristics, historical trending data showing how loss patterns evolve over time, and 

benchmark comparisons against industry standards and peer companies. 

The product team publishes this data through multiple interfaces: a SQL-queryable table in the 

lakehouse for analysts comfortable with data manipulation, a curated set of dimensional models 

optimized for business intelligence tools, a REST API providing programmatic access for applications 

and automated processes, and pre-built dashboards and reports for common analytical patterns. 

Quality guarantees are explicit and monitored. The data is refreshed daily with claims closed in the 

previous 24 hours, achieving 99.5 percent completeness for required fields, maintaining consistency 

with regulatory financial reporting within defined tolerances, and providing data lineage 

documentation tracing every metric back to source systems. 

Another example is a "Policyholder Behavior Propensity" data product that serves marketing and 

customer retention teams. This product combines historical policy data, customer interaction history, 

external demographic and psychographic data, and predictive scores for various behaviors such as 

likelihood to renew, propensity to purchase additional coverage, and risk of lapse. 

The product is updated weekly with new scores, includes confidence intervals and model performance 

metrics, maintains stable identifiers allowing tracking of individual customers over time, and 

documents model versions and feature importance to ensure transparency and trust. 

1.4 The Value Proposition 

Data products create value by reducing the friction in data consumption. Instead of each analytical 

team independently sourcing, cleaning, and transforming the same underlying data, they can leverage 

a well-maintained data product that encapsulates that work. This acceleration of insight generation is 

complemented by improved data quality and consistency, as centralized product ownership ensures 

systematic quality management rather than ad-hoc, inconsistent approaches across multiple consuming 

teams. 

Data products enable better governance and compliance. When data flows through well-defined 

product interfaces, organizations gain visibility into who is using what data for which purposes, 

making it easier to enforce privacy requirements, audit access, and manage sensitive information 

appropriately. 

Perhaps most importantly, data products align data capabilities with business value. By treating data 

as products with clear purposes and user communities, organizations ensure that data investments 

directly support business objectives rather than accumulating as undifferentiated technical assets of 

uncertain value. 

2. Data Mesh Architecture and Insurance Domain Implementation 

2.1 The Data Mesh Paradigm 

Data mesh represents a sociotechnical approach to data architecture that applies product thinking and 

domain-driven design principles to analytical data management. Introduced by Zhamak Dehghani, 

data mesh addresses the scalability and organizational challenges that arise when centralized data 

platforms attempt to serve the diverse needs of large, complex enterprises. 

The architecture rests on four foundational principles. Domain-oriented decentralized data ownership 

recognizes that the teams closest to data generation and consumption understand that data best. Rather 

than centralizing all data management in a single platform team, responsibility is distributed to domain 

teams who own their data products as first-class concerns alongside their operational applications. 

Data as a product thinking requires domain teams to treat their data outputs with the same care and 

rigor they apply to customer-facing products, including user experience considerations, quality 

assurance, versioning, and lifecycle management. 

Self-service data infrastructure provides domain teams with the platforms, tools, and capabilities they 

need to build, deploy, and operate their data products independently without creating bottlenecks 

through centralized teams. This infrastructure includes common frameworks for data storage, 

processing, cataloging, access control, and monitoring. 

Federated computational governance balances autonomy with coherence by establishing global 

standards and policies that all data products must satisfy while allowing domain teams flexibility in 

how they implement those standards within their products. 

 

 

 

http://www.ijmra.us/


 ISSN: 2347-6532Impact Factor: 6.660  

3 International Journal of Engineering& Scientific Research 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

2.2 Mapping Data Mesh to Insurance Domain Structure 

Insurance companies possess natural domain boundaries that align well with data mesh principles. A 

typical property and casualty insurer might organize around several core domains, each becoming a 

center of data product ownership and development. 

The underwriting and risk selection domain owns data products related to risk assessment, pricing, and 

policy issuance. This includes products such as risk scoring models, underwriting guidelines and 

eligibility rules, pricing algorithms and rate tables, and application and quote data with quality 

enrichments. 

The policy administration domain manages the lifecycle of insurance policies and owns products 

including policy master data with standardized attributes, endorsement and renewal history, coverage 

and limits detail, and billing and payment schedules. 

The claims management domain handles loss events and produces data products such as claims detail 

with calculated severity and development, medical and repair cost benchmarks, fraud detection signals 

and investigations, and litigation and subrogation tracking. 

The customer and distribution domain focuses on policyholder relationships and distribution channels, 

creating products like customer master data with household relationships, agent and broker 

performance metrics, marketing campaign response and attribution, and customer interaction history 

across all touchpoints. 

Supporting domains such as finance and actuarial own data products for financial reporting, regulatory 

compliance, reserve calculations, and loss development projections. 

2.3 Insurance Data Mesh Implementation Example 

Consider how a mid-sized regional auto and homeowners insurer might implement data mesh 

principles. The company has struggled with a centralized data warehouse that has become a bottleneck, 

with the small data engineering team unable to keep pace with requests from underwriting, actuarial, 

claims, and marketing departments. Data quality issues persist because the central team lacks deep 

domain expertise, and business users have begun creating shadow IT solutions by extracting data to 

spreadsheets and personal databases. 

The organization embarks on a data mesh transformation by first identifying domain boundaries 

aligned with organizational structure and business capabilities. They establish the underwriting 

domain, claims domain, policy administration domain, customer and marketing domain, and finance 

and actuarial domain. 

For each domain, they designate data product owners who have both business context and technical 

accountability. In the claims domain, for instance, the claims analytics manager becomes the data 

product owner, supported by data engineers embedded within the claims organization rather than 

isolated in a central IT group. 

The platform team shifts from trying to build all data products centrally to providing self-service 

infrastructure. They deploy a lakehouse platform based on Delta Lake and Databricks that provides 

medallion architecture patterns with bronze, silver, and gold layers, data cataloging through Unity 

Catalog for discovery and governance, automated data quality frameworks using Great Expectations, 

orchestration capabilities through Apache Airflow, and access control and row-level security 

capabilities. 

The claims domain begins by defining their foundational data product: the "Claims Master" product. 

This product takes raw claims data from the claims management system and produces a cleaned, 

enriched dataset that includes standardized claim types and cause-of-loss categories mapped to 

industry taxonomies, calculated fields such as claim duration, time to first payment, and current reserve 

adequacy, linkages to policy data to provide coverage and deductible context at time of loss, and 

geocoded loss locations with enriched property characteristics for property claims. 

The product publishes a data contract specifying the schema with required and optional fields and their 

data types, freshness guarantees with daily updates by 6 AM Eastern time, quality thresholds requiring 

99 percent completeness for core fields and zero tolerance for invalid policy references, and breaking 

change policies with 90-day notice for schema changes that would break downstream consumers. 

The actuarial domain consumes this Claims Master product to build their own "Loss Development" 

data product, which the central team previously would have attempted to create. The actuarial team 

applies their deep expertise in loss reserving methodologies to create a product specifically designed 
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for reserve analysis and pricing studies, incorporating age-to-age development factors, case versus 

paid loss patterns, and large loss emergence tracking. 

The marketing domain builds a "Customer Lifetime Value" data product by combining the Policy 

Master product from policy administration, Claims Master product from claims, and their own 

customer interaction data. This cross-domain composition demonstrates how the mesh architecture 

enables building sophisticated analytical products by assembling well-defined components. 

2.4 Organizational and Cultural Transformation 

Implementing data mesh requires more than architectural changes. The insurance company must 

evolve team structures, creating embedded data engineering roles within domain teams rather than 

maintaining strict separation between business and technology groups. Product management 

disciplines are applied to data, with product managers or product owners for significant data products 

who maintain backlogs, prioritize enhancements based on consumer needs, and measure product 

adoption and value. 

Incentives and metrics shift from measuring the central data team's productivity to measuring business 

outcomes enabled by data products, such as time from question to insight, data-driven decision 

velocity, and reduction in manual data preparation effort across the organization. 

Communication and collaboration patterns evolve as domain teams share best practices, reusable 

components, and lessons learned through communities of practice. Regular data product showcases 

allow teams to demonstrate their products and inspire cross-pollination of ideas. 

The transformation takes time, often 18 to 24 months to reach meaningful maturity, but the insurance 

company begins seeing benefits within the first few months as domain teams gain autonomy and 

accelerate delivery of analytical capabilities that directly serve their business priorities. 

3. Applying Data Mesh Principles on Lakehouse Platforms 

3.1 The Lakehouse Foundation 

Lakehouse architectures merge the flexibility and cost-effectiveness of data lakes with the 

management capabilities and performance characteristics traditionally associated with data 

warehouses. By storing data in open formats on object storage while providing ACID transactions, 

schema enforcement, and query optimization, lakehouses eliminate the need to maintain separate 

systems for different analytical workloads. 

For data mesh implementations, lakehouses provide several critical capabilities. Open storage formats 

such as Delta Lake, Apache Iceberg, and Apache Hudi enable data products to be accessed by diverse 

consumption tools without lock-in to proprietary systems. This openness is essential for the self-

service principle, as different domains may prefer different analytical tools. 

Unified governance through catalogs like Unity Catalog, AWS Glue Catalog, or Apache Atlas 

provides centralized discovery while maintaining decentralized ownership. Domains can register their 

data products in the catalog with rich metadata, making them discoverable across the organization 

while retaining full control over the products themselves. 

Separation of storage and compute allows domains to provision the processing resources they need 

independently without interfering with other domains' workloads. This isolation is crucial for the 

autonomy that data mesh requires. 

Schema evolution and versioning capabilities inherent in lakehouse table formats support the product 

lifecycle management necessary when data products evolve over time while maintaining backward 

compatibility for existing consumers. 

3.2 Implementing Domain Boundaries in the Lakehouse 

Physical organization of the lakehouse should reflect domain ownership while enabling cross-domain 

data discovery and consumption. A well-designed lakehouse for data mesh employs several 

organizational strategies. 

Storage namespacing uses cloud storage bucket hierarchies and lakehouse database schemas to create 

clear domain boundaries. An insurance lakehouse might organize storage as s3://company-

lakehouse/domains/claims/, s3://company-lakehouse/domains/underwriting/, s3://company-

lakehouse/domains/policy_admin/, with each domain having full control over their namespace while 

following common conventions. 

Within each domain space, the medallion architecture pattern applies, with bronze, silver, and gold 

layers representing increasing levels of refinement and business-oriented structure. The claims domain 

stores raw claims system extracts in claims.bronze.raw_claims, applies cleansing and standardization 
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to produce claims.silver.clean_claims, and creates business-oriented products in 

claims.gold.claims_master and claims.gold.loss_development. 

Access control policies are defined at the domain level, with domain teams managing permissions for 

their data products. The platform provides the mechanisms through row-level security, column-level 

security, and dynamic views, while domains configure specific policies. The claims domain might 

grant the actuarial domain read access to claims.gold.claims_master while restricting access to 

personally identifiable information through column masking. 

3.3 Self-Service Infrastructure Capabilities 

The platform team provides shared infrastructure that domain teams use to build their data products 

independently. This infrastructure includes ingestion frameworks offering connectors to common 

source systems, change data capture capabilities for real-time or near-real-time data movement, and 

orchestration templates for scheduled data loads. 

Data quality frameworks provide reusable validation rules, automated quality testing integrated into 

data pipelines, and quality score calculation and tracking. Domains configure quality rules specific to 

their products while leveraging common testing infrastructure. 

Transformation and modeling tools include SQL and DataFrame APIs for data manipulation, support 

for declarative modeling tools such as dbt for maintaining transformation logic as code, and lineage 

tracking automatically capturing upstream dependencies and downstream usage. 

Publishing and consumption interfaces provide SQL query access through compute engines like 

Databricks SQL or Amazon Athena, REST APIs generated automatically from data product schemas, 

and streaming access through technologies like Apache Kafka for real-time consumption needs. 

Observability and monitoring capabilities track data freshness with automated staleness detection, 

monitor quality metrics and alerting on threshold violations, track usage patterns to understand who is 

consuming which data products, and measure performance characteristics such as query latency and 

throughput. 

3.4 Federated Governance Implementation 

Computational governance balances global standards with domain autonomy. The governance 

approach operates at multiple levels. 

Global policies are established centrally and enforced through platform mechanisms. These might 

include data classification standards defining sensitivity levels such as public, internal, confidential, 

and restricted, retention policies specifying how long different classes of data must be maintained, 

privacy requirements such as GDPR or CCPA compliance controls, and security baselines including 

encryption requirements and access logging. 

Domain-level policies are defined by domain data product owners within the constraints of global 

standards. The claims domain might define that all claims data is classified as confidential, require 

multi-factor authentication for accessing detailed claim notes, and implement specific retention 

schedules based on statute of limitations considerations for different claim types. 

Product-level specifications are documented for each data product in the catalog. The claims_master 

data product specifies exactly who the data steward is, what the intended use cases are, what the access 

request process entails, what the SLAs are, and what the deprecation policy is. 

The platform enforces compliance through automated policy enforcement. When a domain team 

publishes a data product, the platform validates that appropriate classification tags are applied, required 

metadata is complete, access controls align with classification levels, and quality thresholds are 

defined. 

3.5 Cross-Domain Collaboration Patterns 

While domains own their data products independently, many valuable analytical use cases require 

combining data across domains. The lakehouse enables several collaboration patterns. 

Data product composition allows consumer domains to join and combine data products from multiple 

source domains. The marketing domain creates customer_lifetime_value by reading from 

policy_admin.gold.policy_master, claims.gold.claims_master, and their own customer_interactions 

product. Each source product maintains its independent lifecycle while the consuming product 

manages the integration logic. 

Shared dimension management addresses common entities like customer, geography, and time. Rather 

than each domain creating duplicate dimension tables, a dedicated master data domain might own 

authoritative customer_master and geography_dimension products that other domains reference. This 
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shared ownership model requires careful governance to ensure the shared dimensions meet all 

consuming domains' needs. 

Federated query capabilities in modern lakehouse platforms allow joining across domain-owned 

datasets without physically copying data. The underwriting domain can query 

claims.gold.claims_master directly when evaluating an applicant's prior loss history without the claims 

domain needing to push data into an underwriting-specific dataset. 

Event-driven data products support real-time use cases by publishing domain events to shared event 

streaming platforms. When a new claim is filed, the claims domain publishes a claim_filed event that 

the customer service domain consumes to update customer interaction history and the finance domain 

consumes to update financial projections. 

3.6 Platform Evolution and Domain Enablement 

The platform team's role transforms from building data products to enabling domain teams to build 

their own products. This requires investment in developer experience through comprehensive 

documentation, example patterns and reference implementations, reusable code libraries and 

templates, and self-service provisioning portals for domain teams to request infrastructure resources. 

The platform team provides consultation and support, including office hours and direct assistance, 

architecture reviews for complex data products, performance optimization guidance, and training 

programs on lakehouse capabilities and best practices. 

Continuous improvement happens through feedback loops where the platform team regularly surveys 

domain teams about pain points and missing capabilities, monitors platform usage patterns to identify 

opportunities for optimization, and shares innovations where one domain develops a useful pattern 

that could benefit others. 

This symbiotic relationship between the platform team and domain teams creates a virtuous cycle. As 

the platform becomes more capable and easier to use, domain teams can build more sophisticated data 

products more quickly. As domain teams push the boundaries of what's possible, they surface 

requirements that drive platform evolution. 

 

4. Domain-Oriented Data Models for the Data Mesh 

4.1 The Shift from Enterprise Models to Domain Models 

Traditional enterprise data warehouse approaches pursued comprehensive enterprise data models that 

attempted to create a single unified representation of all organizational data. While intellectually 

appealing, these efforts often failed because they couldn't keep pace with business change, became 

bottlenecks as every change required central approval, and resulted in overly generic models that 

served no use case particularly well. 

Data mesh embraces domain-oriented modeling, recognizing that different domains have 

fundamentally different perspectives on shared concepts. A customer in the underwriting domain is an 

applicant to be risk-assessed. In the policy administration domain, that same customer is a policyholder 

with coverage elections and payment obligations. In the claims domain, they become a claimant with 

loss experiences. In the marketing domain, they represent a set of preferences, behaviors, and lifetime 

value projections. 

Rather than forcing these perspectives into a single model, domain-oriented modeling allows each 

domain to model data according to their specific needs and mental models while establishing clear 

interfaces and translation points where domains interact. 

4.2 Bounded Contexts and Ubiquitous Language 

Drawing from domain-driven design, data mesh applies the concept of bounded contexts to data 

modeling. A bounded context defines the boundary within which a particular domain model applies 

and a ubiquitous language is consistently used. 

In our insurance example, the claims domain's bounded context includes concepts such as claim, which 

represents a request for payment under policy coverage, claimant, the party making the claim, 

loss_event, the incident that triggered the claim, reserve, the estimated amount that will ultimately be 

paid, and severity, the actual or projected cost of the claim. 

These terms have precise meanings within the claims context that may differ from how other domains 

think about similar concepts. The finance domain might view a claim primarily as a liability on the 

balance sheet, while the underwriting domain sees it as a loss experience data point for risk assessment. 
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Within its bounded context, the claims domain models data using terminology and structures that make 

sense to claims professionals. The claims_master data product might include fields such as 

claim_status with domain-specific values like open_pending_investigation, open_in_litigation, 

closed_with_payment, subrogation_recovery, and date_of_loss, loss_notification_date, 

first_payment_date representing the claim lifecycle. 

4.3 Domain Model Architecture Patterns for Data Products 

Effective domain data models in a lakehouse follow architectural patterns that balance expressiveness 

with usability. 

The source-aligned layer maintains close fidelity to operational systems, primarily focused on 

capturing data as it exists in transactional systems with minimal transformation. The claims domain's 

bronze layer contains raw tables mirroring the claims management system's structure, preserving all 

system-specific codes and identifiers. 

The domain-cleansed layer applies domain knowledge to standardize, enrich, and correct data within 

the domain's bounded context. The claims domain's silver layer maps system-specific claim type codes 

to standardized taxonomies, calculates derived fields meaningful to claims professionals such as 

time_from_loss_to_notification and current_reserve_adequacy, geocodes loss locations and enriches 

them with weather data, property characteristics, and other contextual information, and resolves 

duplicates and corrects known data quality issues. 

The domain product layer organizes data for consumption by specific user communities and use cases. 

The claims domain publishes multiple gold layer products, including claims_master as a 

comprehensive claim-level dataset for general analytical use, loss_development as claim triangles and 

development patterns for actuarial analysis, large_loss_tracking for enterprise risk management and 

catastrophe planning, and fraud_investigation_queue with prioritized claims exhibiting fraud 

indicators. 

4.4 Modeling for Cross-Domain Consistency in the Data Mesh 

While each domain models data according to its needs, cross-domain interoperability requires 

coordination around shared concepts. Several strategies enable this without sacrificing domain 

autonomy. 

Conforming dimensions represent shared business entities modeled consistently across domains. All 

domains agree on a common customer identifier, basic customer attributes like name and address, and 

standard geographic hierarchies. Each domain can extend these conforming dimensions with domain-

specific attributes, but the common core enables joining datasets across domains. 

Anti-corruption layers translate between domain models at the boundaries. When the underwriting 

domain consumes the claims_master product, it might apply an anti-corruption layer that maps claims 

terminology into underwriting concepts. What the claims domain calls severity becomes loss_amount 

in underwriting's model. Claim_type values are mapped to underwriting_relevant_loss_categories. 

Canonical events provide a neutral representation of business occurrences that cross domain 

boundaries. When a policy is issued, a policy_issued event is published with a schema that both the 

policy administration domain and the downstream consuming domains agree upon, even if their 

internal models differ. 

Reference data management addresses code sets and classifications used across domains. The platform 

provides shared reference datasets for state_codes, country_codes, and industry_standard_loss_causes 

that all domains use rather than creating incompatible domain-specific versions. 

4.5 Example of Domain Modeling in Practice: Insurance Claims 

Consider the detailed modeling approach for the claims domain's primary data product. The logical 

model organizes information around core entities and their relationships. 

The claim entity serves as the root aggregate with attributes including claim_id as the unique identifier, 

policy_id linking to the policy under which the claim is made, date_of_loss, loss_notification_date, 

claim_status, and claim_type with standardized values such as auto_collision, auto_comprehensive, 

home_fire, home_water_damage. 

Related entities include claimant with party_id, role in values such as insured, third_party, passenger, 

injury_details, and contact_information. Coverage with coverage_type such as bodily_injury, 

property_damage, medical_payments, limits_and_deductibles, and 

coverage_applicability_determination. Payment with payment_id, payment_date, payment_amount, 
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payee, and payment_type as indemnity, expense, deductible_recovery. Reserve with reserve_type 

such as case_reserve, ibnr_reserve, reserve_amount, reserve_date, and reserve_basis_explanation. 

The physical implementation in the lakehouse uses Delta Lake tables with the model translated into 

an efficient storage structure. Partitioning strategies optimize query performance by partitioning 

claims_master by claim_close_year and claim_type, allowing queries filtered by these dimensions to 

scan minimal data. 

Clustering and Z-ordering within partitions further optimize access patterns. The table is Z-ordered by 

policy_id to accelerate queries joining claims to policies. 

Schema evolution is managed through Delta Lake's schema evolution capabilities, allowing backward-

compatible changes like adding new columns without breaking existing consumers. Breaking changes 

are handled through versioning, with claims_master_v2 introduced alongside claims_master_v1 

during a transition period. 

Metadata and documentation are comprehensive, with every field including business definitions 

understood by claims professionals, data lineage showing source systems and transformations, sample 

values and acceptable ranges, and quality rules and validation logic. 

 

5. Advantages of Data Products in a Mesh: Discoverability and Self-Service Analytics 

5.1 The Discoverability Challenge 

In traditional centralized data platforms, discoverability is a persistent challenge. Analysts don't know 

what data exists, where to find it, whether it's trustworthy, or who to ask for access. This leads to 

repeated requests to data teams, duplicated effort as analysts create their own extracts and 

transformations, underutilization of existing capabilities, and slow time-to-insight as analysts spend 

more time searching for data than analyzing it. 

Data mesh with well-designed data products transforms discoverability by making data products first-

class citizens with rich metadata, clear ownership, and self-service access. 

5.2 Data Product Catalogs and Metadata Management 

The foundation of discoverability is a comprehensive data catalog that serves as a marketplace for data 

products. Modern lakehouse platforms provide catalog capabilities that domain teams use to publish 

their products. 

Catalog entries for each data product include business metadata with product name, description, and 

purpose in plain language understandable to non-technical users. A business glossary defines domain-

specific terminology used in the product. Use case examples demonstrate how the product has been 

applied to solve business problems. Owner information provides contact details for the product team. 

Technical metadata specifies schema details with field names, types, and descriptions, storage location 

and access methods, refresh frequency and SLA commitments, data lineage showing source systems 

and transformation logic, and quality metrics and validation rules. 

Operational metadata tracks usage statistics showing query volumes and active users, performance 

characteristics such as typical query response times, incident history documenting outages and issues, 

and version history showing product evolution over time. 

Consumer reviews and ratings allow users to share experiences and provide feedback, creating 

transparency about product quality and usability similar to consumer product reviews. 

5.3 Search and Discovery Capabilities 

Effective catalog implementations provide multiple discovery paths to accommodate different user 

needs and search patterns. 

Keyword search allows users to search across product names, descriptions, field names, and 

documentation. An underwriting analyst searching for "prior claims" would discover the 

claims_master product, loss_development product, and customer_loss_history product, each with 

descriptions explaining their different purposes. 

Faceted browsing enables filtering by domain such as claims, underwriting, policy administration, data 

classification such as public, internal, confidential, update frequency such as real-time, daily, monthly, 

and consumer rating with minimum quality thresholds. 

Lineage-based discovery allows users to explore upstream and downstream relationships. An analyst 

using the loss_development product can navigate upstream to discover it derives from claims_master, 

which in turn sources from the claims management system. They can navigate downstream to see what 

other products or reports depend on loss_development. 
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Tag-based organization enables flexible categorization beyond rigid hierarchies. Products might be 

tagged with subject areas such as claims, reserving, catastrophe, use cases like fraud detection, pricing, 

reporting, data domains such as customer, policy, claim, payment, and compliance requirements like 

PII, GDPR, SOX. 

5.4 Insurance Domain Example: Underwriter Discovery Journey 

Consider a commercial underwriter joining the insurance company who needs to analyze loss 

experience for manufacturing risks in the Midwest. Their discovery journey illustrates the value of 

well-cataloged data products. 

The underwriter begins by searching the data catalog for "manufacturing losses". The search returns 

several relevant data products. The claims_master product appears with a description explaining it 

provides comprehensive claim detail for all lines of business with daily refresh. The 

industry_loss_benchmarks product offers external benchmark data for various industry classifications. 

The commercial_underwriting_analytics product provides pre-built analytical views specifically for 

commercial lines underwriters. 

Exploring the commercial_underwriting_analytics product, the underwriter finds it includes loss ratios 

by industry and geography, pricing adequacy indicators, competitive market position analysis, and 

trending of key risk indicators. The documentation explains this product is specifically designed for 

underwriting use cases and includes sample queries for common analyses. 

Checking the lineage, the underwriter sees this product combines claims_master for internal loss data, 

policy_master for exposure and premium information, and industry_benchmarks for external 

comparisons. Reviews from other underwriters rate it highly for ease of use and relevance to 

underwriting decisions. 

The product's access instructions provide a one-click request process. The underwriter submits a 

request explaining their role and use case. Within minutes, an automated approval workflow grants 

access based on their job role and data classification policies, and the underwriter begins querying the 

data through their preferred business intelligence tool. 

What might have taken days or weeks in a traditional environment—finding the right data, requesting 

access, waiting for data team assistance, learning the data structure—happens in under an hour through 

self-service discovery and access. 

5.5 Self-Service Analytics Capabilities 

Discoverability alone is insufficient; users must also be able to independently access and analyze data 

products without constant intervention from data teams. 

Direct query access through SQL engines like Databricks SQL or Athena allows analysts to query data 

products using familiar SQL syntax. The lakehouse's query optimization ensures good performance 

without requiring analysts to understand physical storage details. 

Business intelligence tool integration enables analysts to connect Excel, Tableau, Power BI, or other 

BI tools directly to data products. Pre-built semantic models and dimensional structures make it easy 

to create visualizations and reports without deep technical knowledge. 

Programmatic access through REST APIs allows applications and data scientists to consume data 

products programmatically. The actuarial team builds a pricing model that calls the claims_master API 

to retrieve relevant loss history for each underwriting submission automatically. 

Notebook environments such as Jupyter or Databricks notebooks provide exploratory analysis 

capabilities for more sophisticated users. Data scientists access data products through DataFrames 

APIs, applying machine learning algorithms and statistical analyses. 

Export capabilities allow users to extract datasets for use in specialized tools. An actuary might export 

triangulated loss development data to actuarial modeling software that doesn't support direct database 

connectivity. 

5.6 Governance Enabling Self-Service 

Self-service doesn't mean ungoverned access. The lakehouse platform enforces policies that enable 

broad access while protecting sensitive data and maintaining compliance. 

Role-based access control automatically grants permissions based on job roles. All underwriters get 

read access to underwriting-relevant products. Actuaries access reserving and pricing products. Senior 

leadership accesses executive dashboards. Access is provisioned automatically based on HR system 

integration rather than requiring manual approval for each request. 
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Attribute-based access control provides finer-grained policies. A claims adjuster sees only claims for 

their assigned geographic territory. A product manager sees data only for their product lines. Row-

level security filters data based on user attributes without requiring separate datasets for each user 

population. 

Column-level security and masking protect sensitive fields. Most users see claims_master with 

personally identifiable information masked, showing only that a claimant exists without revealing their 

name or contact details. Investigators with proper authorization see unmasked data. This allows broad 

access to analytical data while protecting privacy. 

Dynamic data masking applies different policies based on context. A data scientist building fraud 

detection models sees synthetic data for development and testing but accesses real data only in 

controlled production environments with full audit logging. 

Usage monitoring and audit logs track all access to data products, supporting compliance requirements 

and detecting anomalous usage patterns. When a user suddenly exports large volumes of data outside 

normal patterns, security teams receive alerts to investigate potential data exfiltration. 

5.7 Insurance Domain Example: Accelerated Claims Analytics 

An insurance company's claims analytics team exemplifies the transformation enabled by data mesh 

with strong discoverability and self-service. 

Previously, the team spent 60 percent of their time on data acquisition and preparation. Each analytical 

project began with requests to IT for data extracts, weeks of waiting while the request was prioritized, 

rounds of clarification about exactly what data was needed, manual reconciliation when extracted data 

didn't match expectations, and custom transformation logic to prepare data for analysis. 

After implementing data mesh on the lakehouse, the team's workflow transforms dramatically. They 

begin new projects by searching the data catalog for relevant products, immediately finding the 

claims_master and loss_development products with comprehensive documentation. They explore 

sample queries and documentation to understand what's available. They request access through self-

service workflows, receiving approval within minutes based on their role. 

They directly query the data products using SQL or their BI tools without waiting for IT. They discover 

additional products through lineage exploration, such as the weather_events product that helps explain 

catastrophe losses. They combine multiple products to create new analytical views without needing to 

understand ETL logic. 

The team now spends 80 percent of their time on actual analysis rather than data preparation. Time 

from question to initial insights drops from weeks to hours. The number of analytical projects 

completed increases by a factor of three. Crucially, the team can respond to urgent business questions 

without waiting for data team availability. 

When a severe hailstorm affects multiple states, executive leadership asks for loss estimates within 

hours. The analytics team immediately queries claims_master filtered by date and geocoded loss 

locations, joins to policy_master to identify exposed policies not yet reported, and references 

historical_catastrophe_patterns to project ultimate losses. They deliver preliminary estimates within 

two hours rather than the days required under the old model. 

5.8 Enabling Innovation Through Accessibility 

When data becomes discoverable and accessible through self-service, innovation accelerates. Teams 

can explore ideas without significant upfront investment or coordination overhead. 

A claims process improvement team hypothesizes that certain claim characteristics predict long 

settlement times. They search the catalog and find claims_master includes all the data elements they 

need. They quickly prototype an analysis, identify key predictors, and propose process changes. The 

entire cycle from hypothesis to recommendation takes two weeks rather than three months. 

A product development team wants to design a new insurance product targeting a specific customer 

segment. They discover the customer_analytics and loss_experience products provide exactly the data 

needed to assess market opportunity and price the coverage appropriately. They build a business case 

with confidence in data-driven projections. 

A data scientist exploring machine learning approaches to fraud detection discovers pre-built feature 

sets in the fraud_indicators product, accelerating model development. They also find the 

model_training_data product that provides properly labeled examples of known fraud cases, 

eliminating months of work to curate training data. 
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This democratization of data access doesn't mean chaos. The governance frameworks ensure access is 

appropriate, usage is audited, and sensitive data remains protected. But within those guardrails, teams 

have unprecedented freedom to explore, innovate, and create value from data. 

 

Conclusion 

The combination of lakehouse infrastructure and data mesh operating principles represents a powerful 

paradigm for analytical data management at scale. By organizing data products around domains, 

treating data with product thinking, providing self-service infrastructure, and implementing federated 

governance, organizations can overcome the scalability limitations of centralized data platforms while 

avoiding the chaos of completely decentralized approaches. 

The lakehouse provides the technical foundation with open storage formats, ACID transactions, 

unified governance, and separation of storage and compute that enable independent domains to build 

and maintain their data products. Data mesh provides the organizational model that aligns data 

capabilities with business domain expertise and decision-making. 

Through concrete implementation patterns including domain-oriented data models bounded by context 

but interconnected where necessary, comprehensive data contracts and SLAs that formalize product 

commitments, clear ownership and accountability for data product quality and evolution, reusable 

assets that eliminate redundant effort and ensure consistency, and rich metadata enabling 

discoverability and self-service access, organizations create analytical capabilities that scale with 

business complexity rather than becoming bottlenecks. 

The insurance industry examples throughout this paper demonstrate practical applications of these 

principles. From claims analytics to underwriting decision support, from actuarial reserving to fraud 

detection, data mesh on lakehouse enables insurance companies to leverage data more effectively, 

respond faster to market changes, and make better risk-based decisions. 

As organizations continue evolving their data architectures, the lakehouse-plus-mesh approach offers 

a roadmap for building analytical capabilities that are scalable, governed, and aligned with business 

value creation. The journey requires both technical implementation and organizational transformation, 

but the benefits in agility, quality, and business impact make it a compelling direction for data-driven 

enterprises. 

As organizations continue evolving their data architectures, the lakehouse-plus-mesh approach offers 

a roadmap for building analytical capabilities that are scalable, governed, and aligned with business 

value creation. The journey requires both technical implementation and organizational transformation, 

but the benefits in agility, quality, and business impact make it a compelling direction for data-driven 

enterprises. 
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